4.5 Article

An enhanced integrated stress response ameliorates mutant SOD1-induced ALS

Journal

HUMAN MOLECULAR GENETICS
Volume 23, Issue 10, Pages 2629-2638

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddt658

Keywords

-

Funding

  1. Muscular Dystrophy Association [4346]
  2. ALS Association [1211]
  3. NIH [NS34939]

Ask authors/readers for more resources

Varied stresses to cells can lead to a repression in translation by triggering phosphorylation of eukaryotic translation initiator factor 2 (eIF2), which is central to a process known as the integrated stress response (ISR). PKR-like ER-localized eIF2 kinase (PERK), one of the kinases that phosphorylates eIF2 and coordinates the ISR, is activated by stress occurring from the accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER). Mutant Cu/Zn superoxide dismutase (mtSOD1) is thought to cause familial amyotrophic lateral sclerosis (FALS) because it misfolds and aggregates. Published studies have suggested that ER stress is involved in FALS pathogenesis since mtSOD1 accumulates inside the ER and activates PERK leading to phosphorylated eIF2 (p-eIF2). We previously used a genetic approach to show that haploinsufficiency of PERK significantly accelerates disease onset and shortens survival of G85R mtSOD1 FALS transgenic mice. We now show that G85R mice that express reduced levels of active GADD34, which normally dephosphorylates p-eIF2 and allows recovery from the global suppression of protein synthesis, markedly ameliorates disease. These studies emphasize the importance of the ISR, and specifically the PERK pathway, in the pathogenesis of mtSOD1-induced FALS and as a target for treatment. Furthermore, the ISR may be an appropriate therapeutic target for sporadic ALS and other neurodegenerative diseases since misfolded proteins have been implicated in these disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available