4.5 Article

LRRK2 Parkinson disease mutations enhance its microtubule association

Journal

HUMAN MOLECULAR GENETICS
Volume 21, Issue 4, Pages 890-899

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddr526

Keywords

-

Funding

  1. National Institute of Neurological Diseases and Stroke [R01 NS061098-02]
  2. National Institutes of Health [P41 RR004050]
  3. Branfman Family Foundation

Ask authors/readers for more resources

Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic causes of Parkinson disease (PD) and genome-wide association studies identify LRRK2 sequence variants as risk factors for sporadic PD. Intact kinase function appears critical for the toxicity of LRRK2 PD mutants, yet our understanding of how LRRK2 causes neurodegeneration remains limited. We find that most LRRK2 PD mutants abnormally enhance LRRK2 oligomerization, causing it to form filamentous structures in transfections of cell lines or primary neuronal cultures. Strikingly, ultrastructural analyses, including immuno-electron microscopy and electron microscopic tomography, demonstrate that these filaments consist of LRRK2 recruited onto part of the cellular microtubule network in a well-ordered, periodic fashion. Like LRRK2-related neurodegeneration, microtubule association requires intact kinase function and the WD40 domain, potentially linking microtubule binding and neurodegeneration. Our observations identify a novel effect of LRRK2 PD mutations and highlight a potential role for microtubules in the pathogenesis of LRRK2-related neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available