4.5 Article

A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions

Journal

HUMAN MOLECULAR GENETICS
Volume 19, Issue 14, Pages 2780-2791

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddq179

Keywords

-

Funding

  1. Roswell Park Alliance Foundation
  2. Louis Sklarow Memorial Fund
  3. Fondation Jerome Lejeune
  4. Children's Guild Foundation
  5. NIH [R01HL091519]

Ask authors/readers for more resources

Down syndrome (DS) is caused by the presence of an extra copy of human chromosome 21 (Hsa21) and is the most common genetic cause for developmental cognitive disability. The regions on Hsa21 are syntenically conserved with three regions located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. In this report, we describe a new mouse model for DS that carries duplications spanning the entire Hsa21 syntenic regions on all three mouse chromosomes. This mouse mutant exhibits DS-related neurological defects, including impaired cognitive behaviors, reduced hippocampal long-term potentiation and hydrocephalus. These results suggest that when all the mouse orthologs of the Hsa21 genes are triplicated, an abnormal cognitively relevant phenotype is the final outcome of the elevated expressions of these orthologs as well as all the possible functional interactions among themselves and/or with other mouse genes. Because of its desirable genotype and phenotype, this mutant may have the potential to serve as one of the reference models for further understanding the developmental cognitive disability associated with DS and may also be used for developing novel therapeutic interventions for this clinical manifestation of the disorder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available