4.5 Article

Context-dependent robustness to 5′ splice site polymorphisms in human populations

Journal

HUMAN MOLECULAR GENETICS
Volume 20, Issue 6, Pages 1084-1096

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddq553

Keywords

-

Funding

  1. National Institutes of Health [R01HG004634, R01GM088342]
  2. Edward Mallinckrodt Jr Foundation

Ask authors/readers for more resources

There has been growing evidence for extensive diversity of alternative splicing in human populations. Genetic variants within the 5' splice site can cause splicing differences among human individuals and constitute an important class of human disease mutations. In this study, we explored whether natural variations of splicing could reveal important signals of 5' splice site recognition. In seven lymphoblastoid cell lines of Asian, European and African ancestry, we identified 1174 single nucleotide polymorphisms (SNPs) within the consensus 5' splice site. We selected 129 SNPs predicted to significantly alter the splice site activity, and quantitatively examined their splicing impact in the seven individuals. Surprisingly, outside of the essential GT dinucleotide position, only similar to 14% of the tested SNPs altered splicing. Bioinformatic and minigene analyses identified signals that could modify the impact of 5' splice site polymorphisms, most notably a strong 3' splice site and the presence of intronicmotifs downstream of the 5' splice site. Strikingly, we found that the poly-G run, a known intronic splicing enhancer, was the most significantly enriched motif downstream of exons unaffected by 5' splice site SNPs. In TRIM62, theupstream 3' splice site and downstream intronic poly-Gruns functioned redundantly to protect an exon from its 5' splice site polymorphism. Collectively, our study reveals widespread context-dependent robustness to 5' splice site polymorphisms in human transcriptomes. Consequently, certain exons are more susceptible to 5' splice site mutations. Additionally, our work demonstrates that genetic diversity of alternative splicing can provide significant insights into the splicing code of mammalian cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available