4.5 Article

Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy(dagger)

Journal

HUMAN MOLECULAR GENETICS
Volume 19, Issue 9, Pages 1766-1778

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddq058

Keywords

-

Funding

  1. National Science Council, Taiwan [NSC98-2321-B-001-029]

Ask authors/readers for more resources

Spinal muscular atrophy (SMA), a motor neuron degeneration disorder, is caused by either mutations or deletions of survival motor neuron 1 (SMN1) gene which result in insufficient SMN protein. Here, we describe a potential link between stathmin and microtubule defects in SMA. Stathmin was identified by screening Smn-knockdown NSC34 cells through proteomics analysis. We found that stathmin was aberrantly upregulated in vitro and in vivo, leading to a decreased level of polymerized tubulin, which was correlated with disease severity. Reduced microtubule densities and beta(III)-tubulin levels in distal axons of affected SMA-like mice and an impaired microtubule network in Smn-deficient cells were observed, suggesting an involvement of stathmin in those microtubule defects. Furthermore, knockdown of stathmin restored the microtubule network defects of Smn-deficient cells, promoted axon outgrowth and reduced the defect in mitochondria transport in SMA-like motor neurons. We conclude that aberrant stathmin levels may play a detrimental role in SMA; this finding suggests a novel approach to treating SMA by enhancing microtubule stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available