4.5 Article

Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration

Journal

HUMAN MOLECULAR GENETICS
Volume 18, Issue 11, Pages 2001-2013

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp124

Keywords

-

Funding

  1. UMDF
  2. MDA
  3. CARIPLO
  4. FIRB
  5. Istituto Superiore Sanita

Ask authors/readers for more resources

The mitochondrial m-AAA protease has a crucial role in axonal development and maintenance. Human mitochondria possess two m-AAA protease isoenzymes: a hetero-oligomeric complex, composed of paraplegin and AFG3L2 (Afg3 like 2), and a homo-oligomeric AFG3L2 complex. Loss of function of paraplegin (encoded by the SPG7 gene) causes hereditary spastic paraplegia, a disease characterized by retrograde degeneration of cortical motor axons. Spg7(-/-) mice show a late-onset degeneration of long spinal and peripheral axons with accumulation of abnormal mitochondria. In contrast, Afg3l2(Emv66/Emv66) mutant mice, lacking the AFG3L2 protein, are affected by a severe neuromuscular phenotype, due to defects in motor axon development. The role of the homo-oligomeric m-AAA protease and the extent of cooperation and redundancy between the two isoenzymes in adult neurons are still unclear. Here we report an early-onset severe neurological phenotype in Spg7(-/-) Afg3l2(Emv66/+) mice, characterized by loss of balance, tremor and ataxia. Spg7(-/-) Afg3l2(Emv66/+) mice display acceleration and worsening of the axonopathy observed in paraplegin-deficient mice. In addition, they show prominent cerebellar degeneration with loss of Purkinje cells and parallel fibers, and reactive astrogliosis. Mitochondria from affected tissues are prone to lose mt-DNA and have unstable respiratory complexes. At late stages, neurons contain structural abnormal mitochondria defective in COX-SDH reaction. Our data demonstrate genetic interaction between the m-AAA isoenzymes and suggest that different neuronal populations have variable thresholds of susceptibility to reduced levels of the m-AAA protease. Moreover, they implicate impaired mitochondrial proteolysis as a novel pathway in cerebellar degeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available