4.5 Article

CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3

Journal

HUMAN MOLECULAR GENETICS
Volume 18, Issue 17, Pages 3334-3343

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp274

Keywords

-

Funding

  1. National Ataxia Foundation
  2. Deutsche Forschungsgemeinschaft [WU184/6-1, EV143/1-1]
  3. EuroSCA [LSHM-CT-2004-503304]

Ask authors/readers for more resources

The nuclear presence of the expanded disease proteins is of critical importance for the pathogeneses of polyglutamine diseases. Here we show that protein casein kinase 2 (CK2)-dependent phosphorylation controls the nuclear localization, aggregation and stability of ataxin-3 (ATXN3), the disease protein in spinocerebellar ataxia type 3 (SCA3). Serine 340 and 352 within the third ubiquitin-interacting motif of ATXN3 were particularly important for nuclear localization of normal and expanded ATXN3 and mutation of these sites robustly reduced the formation of nuclear inclusions; a putative nuclear leader sequence was not required. ATXN3 associated with CK2 alpha and pharmacological inhibition of CK2 decreased nuclear ATXN3 levels and the formation of nuclear inclusions. Moreover, we found that ATXN3 shifted to the nucleus upon thermal stress in a CK2-dependent manner, indicating a key role of CK2-mediated phosphorylation of ATXN3 in SCA3 pathophysiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available