4.5 Article

Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure

Journal

HUMAN MOLECULAR GENETICS
Volume 18, Issue 20, Pages 3978-3986

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp344

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Japan Society for the Promotion of Science, Japan-Taiwan Joint Research Program
  3. Salt Science Research Foundation [0832]

Ask authors/readers for more resources

We recently generated Wnk4(D561A/+) knockin mice and found that a major pathogenesis of pseudohypoaldosteronism type II was the activation of the OSR1/SPAK kinase-NaCl cotransporter (NCC) phosphorylation cascade by the mutant WNK4. However, the physiological roles of wild-type WNK4 on the regulation of Na excretion and blood pressure, and whether wild-type WNK4 functions positively or negatively in this cascade, remained to be determined. In the present study, we generated WNK4 hypomorphic mice by deleting exon 7 of the Wnk4 gene. These mice did not show hypokalemia and metabolic alkalosis, but they did exhibit low blood pressure and increased Na and K excretion under low-salt diet. Phosphorylation of OSR1/SPAK and NCC was significantly reduced in the mutant mice as compared with their wild-type littermates. Protein levels of ROMK and Maxi K were not changed, but epithelial Na channel appeared to be activated as a compensatory mechanism for the reduced NCC function. Thus, wild-type WNK4 is a positive regulator for the WNK-OSR1/SPAK-NCC cascade, and WNK4 is a potential target of anti-hypertensive drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available