4.5 Article

Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology

Journal

HUMAN MOLECULAR GENETICS
Volume 19, Issue 2, Pages 313-328

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddp498

Keywords

-

Funding

  1. Microsoft Research
  2. National Institutes of Health [NS051738]
  3. Department of Defense [USAMRAA W81XWH-07-0246]
  4. Wyckoff family
  5. Moyer Foundation
  6. Mrs Lois Caprile
  7. Benaroya Foundation

Ask authors/readers for more resources

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness from loss of motor neurons. The fundamental pathogenic mechanisms are unknown and recent evidence is implicating a significant role for abnormal exon splicing and RNA processing. Using new comprehensive genomic technologies, we studied exon splicing directly in 12 sporadic ALS and 10 control lumbar spinal cords acquired by a rapid autopsy system that processed nervous systems specifically for genomic studies. ALS patients had rostral onset and caudally advancing disease and abundant residual motor neurons in this region. We created two RNA pools, one from motor neurons collected by laser capture microdissection and one from the surrounding anterior horns. From each, we isolated RNA, amplified mRNA, profiled whole-genome exon splicing, and applied advanced bioinformatics. We employed rigorous quality control measures at all steps and validated findings by qPCR. In the motor neuron enriched mRNA pool, we found two distinct cohorts of mRNA signals, most of which were up-regulated: 148 differentially expressed genes (P < 10(-3)) and 411 aberrantly spliced genes (P < 10(-5)). The aberrantly spliced genes were highly enriched in cell adhesion (P < 10(-57)), especially cell-matrix as opposed to cell-cell adhesion. Most of the enriching genes encode transmembrane or secreted as opposed to nuclear or cytoplasmic proteins. The differentially expressed genes were not biologically enriched. In the anterior horn enriched mRNA pool, we could not clearly identify mRNA signals or biological enrichment. These findings, perturbed and up-regulated cell-matrix adhesion, suggest possible mechanisms for the contiguously progressive nature of motor neuron degeneration. Data deposition: GeneChip raw data (CEL-files) have been deposited for public access in the Gene Expression Omnibus (GEO), www.ncbi.nlm.nih.gov/geo, accession number GSE18920.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available