4.2 Article

A novel single cDNA amplicon pyrosequencing method for high-throughput, cost-effective sequence-based HLA class I genotyping

Journal

HUMAN IMMUNOLOGY
Volume 71, Issue 10, Pages 1011-1017

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.humimm.2010.07.012

Keywords

Pyrosequencing; Human leukocyte antigen; Sequence-based typing; Multiplexing; High-throughput

Categories

Funding

  1. University of Wisconsin Foundation-Wisconsin Partnership-Medical Education and Research Committee [20070709]

Ask authors/readers for more resources

Human leukocyte antigen (HLA) genotype influences the immune response to pathogens and transplanted tissues; accurate HLA genotyping is critical for clinical and research applications. Sequence-based HLA typing is limited by the cost of Sanger sequencing genomic DNA (gDNA) and resolving cis/trans ambiguities, hindering both studies correlating high-resolution genotype with clinical outcomes, and population-specific allele frequency surveys. We present an assay for sequence-based HLA genotyping by titanium read length clonal Roche/454 pyrosequencing of a single, universally diagnostic polymerase chain reaction (PCR) amplicon from HLA class I cDNA that captures most of exons 2, 3, and 4 used for traditional sequence-based typing. The amplicon is predicted to unambiguously resolve 85% of known alleles. A panel of 48 previously HLA-typed samples was assayed with this method, demonstrating 100% non-null allele typing concordance. We show that this technique can multiplex at least 768 patients per sequencing run with multiplex identifier sequence bar-coding. Unprecedented typing throughput results from a novel single cDNA-PCR amplicon strategy requiring only 1 PCR amplification per sample. This method dramatically reduces cost for genotyping of large cohorts. (C) 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available