4.6 Article

Gene-gene and gene-environment interactions in ulcerative colitis

Journal

HUMAN GENETICS
Volume 133, Issue 5, Pages 547-558

Publisher

SPRINGER
DOI: 10.1007/s00439-013-1395-z

Keywords

-

Funding

  1. NIH-National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) [T32 DK083251, DK068112, DK062420, DK076025, AG030653]
  2. Crohn's and Colitis Foundation of America Senior Research Award
  3. Kenneth and Jennifer Rainin
  4. Wesley Roj
  5. Douglas Durham Roj Endowed Fund
  6. Gerald and Nancy Goldberg

Ask authors/readers for more resources

Genome-wide association studies (GWAS) have identified at least 133 ulcerative colitis (UC) associated loci. The role of genetic factors in clinical practice is not clearly defined. The relevance of genetic variants to disease pathogenesis is still uncertain because of not characterized gene-gene and gene-environment interactions. We examined the predictive value of combining the 133 UC risk loci with genetic interactions in an ongoing inflammatory bowel disease (IBD) GWAS. The Wellcome Trust Case-Control Consortium (WTCCC) IBD GWAS was used as a replication cohort. We applied logic regression (LR), a novel adaptive regression methodology, to search for high-order interactions. Exploratory genotype correlations with UC sub-phenotypes [extent of disease, need of surgery, age of onset, extra-intestinal manifestations and primary sclerosing cholangitis (PSC)] were conducted. The combination of 133 UC loci yielded good UC risk predictability [area under the curve (AUC) of 0.86]. A higher cumulative allele score predicted higher UC risk. Through LR, several lines of evidence for genetic interactions were identified and successfully replicated in the WTCCC cohort. The genetic interactions combined with the gene-smoking interaction significantly improved predictability in the model (AUC, from 0.86 to 0.89, P = 3.26E-05). Explained UC variance increased from 37 to 42 % after adding the interaction terms. A within case analysis found suggested genetic association with PSC. Our study demonstrates that the LR methodology allows the identification and replication of high-order genetic interactions in UC GWAS datasets. UC risk can be predicted by a 133 loci and improved by adding gene-gene and gene-environment interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available