4.5 Article

Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice

Journal

HUMAN GENE THERAPY
Volume 19, Issue 3, Pages 241-254B

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/hum.2007.159

Keywords

-

Funding

  1. NIAMS NIH HHS [AR50595, AR45967] Funding Source: Medline
  2. PHS HHS [W81XWH-05-0334] Funding Source: Medline

Ask authors/readers for more resources

Myostatin has been extensively documented as a negative regulator of muscle growth. Myostatin inhibition is therefore considered an attractive strategy for the treatment of muscle-wasting diseases such as muscular dystrophies. To investigate whether systemic gene delivery of myostatin propeptide (MRPO), a natural inhibitor of myostatin, could enhance body-wide skeletal muscle growth, we used adeno-associated virus serotype 8 (AAV8) vectors to deliver the MRPO gene into either normal mice or mdx mice, a murine model of Duchenne muscular dystrophy (DMD). In normal mice, a significant increase in skeletal muscle mass was observed after either an intraperitoneal injection of AAV-MPRO into neonates, or an intravenous injection of AAV-MPRO76AFc ( a modified MPRO fused with IgG Fc) into adults. Enhanced muscle growth occurred because of myofiber hypertrophy, not hyperplasia. In mdx mice, a significant increase in skeletal muscle mass was also observed after AAV-MPRO76AFc injection. The treated mdx mice showed larger and more uniform myofibers, fewer infiltrating mononuclear cells, less fibrosis, and lower serum creatine kinase levels. In addition, a grip force test and an in vitro tetanic contractile force test showed improved muscle strength. A treadmill test, however, showed reduced endurance of the treated mdx mice compared with their untreated counterparts. Importantly, no cardiac hypertrophy was observed in either normal or mdx mice after myostatin inhibition by gene delivery. These results clearly demonstrate the efficacy of AAV8-mediated myostatin propeptide gene delivery in a rodent model of DMD, and warrant further investigation in large animal models and eventually in human patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available