4.8 Article

Continuous-wave differential absorption lidar

Journal

LASER & PHOTONICS REVIEWS
Volume 9, Issue 6, Pages 629-636

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/lpor.201400419

Keywords

Differential absorption lidar; atmospheric gas sensing; Scheimpflug principle; oxygen; laser diode

Ask authors/readers for more resources

This work proves the feasibility of a novel concept of differential absorption lidar based on the Scheimpflug principle. The range-resolved atmospheric backscattering signal of a laser beam is retrieved by employing a tilted linear sensor with a Newtonian telescope, satisfying the Scheimpflug condition. Infinite focus depth is achieved despite employing a large optical aperture. The concept is demonstrated by measuring the range-resolved atmospheric oxygen concentration with a tunable continuous-wave narrow-band laser diode emitting around 761 nm over a path of one kilometer during night time. Laser power requirements for daytime operation are also investigated and validated with single-band atmospheric aerosol measurements by employing a broad-band 3.2-W laser diode. The results presented in this work show the potential of employing the continuous-wave differential absorption lidar (CW-DIAL) technique for remote profiling of atmospheric gases in daytime if high-power [GRAPHICS] narrow-band continuous-wave light sources were to be employed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available