4.7 Article

Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination

Journal

HUMAN BRAIN MAPPING
Volume 40, Issue 2, Pages 407-419

Publisher

WILEY
DOI: 10.1002/hbm.24381

Keywords

correlation; covariance; fMRI; functional connectivity; partial correlation; rfMRI

Funding

  1. University of Oxford
  2. European Research Council [319456]
  3. Spanish Ministerio de Economia y Competitividad [BES-2011-047053]
  4. Wellcome Trust [203139/Z/16/Z]

Ask authors/readers for more resources

The analysis of Functional Connectivity (FC) is a key technique of fMRI, having been used to distinguish brain states and conditions. While many approaches to calculating FC are available, there have been few assessments of their differences, making it difficult to choose approaches, and compare results. Here, we assess the impact of methodological choices on discriminability, using a fully controlled data set of continuous active states involving basic visual and motor tasks, providing robust localized FC changes. We tested a range of anatomical and functional parcellations, including the AAL atlas, parcellations derived from the Human Connectome Project and Independent Component Analysis (ICA) of many dimensionalities. We measure amplitude, covariance, correlation, and regularized partial correlation under different temporal filtering choices. We evaluate features derived from these methods for discriminating states using MVPA. We find that multidimensional parcellations derived from functional data performed similarly, outperforming an anatomical atlas, with correlation and partial correlation (p<.05, FDR). Partial correlation, with appropriate regularization, outperformed correlation. Amplitude and covariance generally discriminated less well, although gave good results with high-dimensionality ICA. We found that discriminative FC properties are frequency specific; higher frequencies performed surprisingly well under certain configurations of atlas choices and dependency measures, with ICA-based parcellations revealing greater discriminability at high frequencies compared to other parcellations. Methodological choices in FC analyses can have a profound impact on results and can be selected to optimize accuracy, interpretability, and sharing of results. This work contributes to a basis for consistent selection of approaches to estimating and analyzing FC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available