4.7 Article

Somatosensory System in Two Types of Motor Reorganization in Congenital Hemiparesis: Topography and Function

Journal

HUMAN BRAIN MAPPING
Volume 30, Issue 3, Pages 776-788

Publisher

WILEY
DOI: 10.1002/hbm.20545

Keywords

brain plasticity; somatosensory reorganization; motor reorganization; congenital hemiparesis; early brain lesions

Funding

  1. German Research Council [DFG SFB550-C4, C6]

Ask authors/readers for more resources

This study investigates the (re-)organization of somatosensory functions following early brain lesions. Using functional magnetic resonance imaging (fMRI), passive hand movement was studied. Transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) were used as complementary methods. fMRI data was analyzed on the first level with regard to topographical variability; second-level group effects as well as the overall integrity of the somatosensory circuitry were also assessed. Subjects with unilateral brain lesions occurring in the third trimester of pregnancy or perinatally with different types of motor reorganization were included: patients with regular, contralateral motor organization following middle cerebral artery strokes (CONTRA(MCA), n = 6) and patients with reorganized, ipsilateral motor functions due to periventricular lesions (IPSIPL, n = 8). Motor impairment was similar, but sensory impairment was more pronounced in the CONTRA(MCA) group. Using fMRI and MEG, both groups showed a normal pattern with a contralateral somatosensory representation, despite the transhemispherically reorganized primary motor cortex in the IPSIPL group, as verified by TMS. Activation topography for the paretic hands was more variable than for the nonparetic hand in both groups. The cortico-cerebellar circuitry was well-preserved in almost all subjects. We conclude that in both models of motor reorganization, no interhemispheric reorganization of somatosensory functions occurred. Also, no relevant intrahemispheric reorganization was observed apart from a higher topographical variability of fMRI activations. This preserved pattern of somatosensory organization argues in favor of a differential lesion effect on motor and somatosensory functions and demonstrates a limited compensatory potential for the latter. Hum Brain Mapp 30:776-788, 2009. (c) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available