4.6 Article

Colloidal Properties of Nanoerythrosomes Derived from Bovine Red Blood Cells

Journal

LANGMUIR
Volume 32, Issue 1, Pages 171-179

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b03014

Keywords

-

Funding

  1. Directorate For Engineering
  2. Div Of Chem, Bioeng, Env, & Transp Sys [1264509] Funding Source: National Science Foundation
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1160005] Funding Source: National Science Foundation

Ask authors/readers for more resources

Liposomes are nanoscale containers that are typically synthesized from lipids using a high-shear process such as extrusion or sonication. While liposomes are extensively used in drug delivery, they do suffer from certain problems including limited colloidal stability and short circulation times in the body. As an alternative to liposomes, we explore a class of container structures derived from erythrocytes (red blood cells). The procedure involves emptying the inner contents of these cells (specifically hemoglobin) and resuspending the empty structures in buffer, followed by sonication. The resulting structures are termed nanoerythrosomes (NERs), i.e., they are membrane-covered nanoscale containers, much like liposomes. Cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) are employed for the first time to study these NERs. The results reveal that the NERs are discrete spheres (similar to 110 nm diameter) with a unilamellar membrane of thickness similar to 4.5 nm. Remarkably, the biconcave disc-like shape of erythrocytes is also exhibited by the NERs under hypertonic conditions. Moreover, unlike typical liposomes, NERs show excellent colloidal stability in both buffer as well as in serum at room temperature, and are also able to withstand freeze thaw cycling. We have explored the potential for using NERs as colloidal vehicles for targeted delivery. Much like conventional liposomes, NER membranes can be decorated with fluorescent or other markers, solutes can be encapsulated in the cores of the NERs, and NERs can be targeted to specifically bind to mammalian cells. Our study shows that NERs are a promising and versatile class of nanostructures. NERs that are harvested from a patient's own blood and reconfigured for nanomedicine can potentially offer several benefits including biocompatibility, minimization of immune response, and extended circulation time in the body.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available