4.6 Article

Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO2 and CH4

Journal

LANGMUIR
Volume 31, Issue 36, Pages 9845-9852

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b02390

Keywords

-

Funding

  1. U.S. National Aeronautics and Space Administration (New Mexico Space Grant)
  2. U.S. National Science Foundation [EEC 1028968]
  3. New Mexico State University Office of Vice President for Research (GREG)

Ask authors/readers for more resources

Oxygen-doped microporous carbons were synthesized by chemical activation of polyfuran with KOH or ZnCl2 at 600 and 800 degrees C. It was found that KOH preserves and ZnCl2 eliminates the O-C functional groups in the activation process. The O-doped carbon activated with KOH at 800 degrees C exhibited a high CO2 capacity (4.96 mmol g(-1) 273 K, 1 bar) and CH4 adsorption capacity (2.27 mmol g(-1), 273 K, 1 bar). At 298 K and 1 bar, a very high selectivity for separating CO2/N-2 (41.7) and CO2/CH4 (6.8) gas mixture pairs was obtained on the O-doped carbon activated with KOH at 600 degrees C. The excellent separation ability of the O-doped carbons was demonstrated in transient breakthrough simulations of CO2/CH4/N-2 mixtures in a fixed bed adsorber. The isosteric adsorption heats of the O-doped carbons were also significantly lower than those of MOF-74 and NaX zeolite. The O-doped microporous carbon adsorbents appear to be a very promising adsorbent for CO2 capture from flue gas, biogas upgrading, and CH4 storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available