4.4 Article

Histomorphometric evaluation of cannabinoid receptor and anandamide modulating enzyme expression in the human endometrium through the menstrual cycle

Journal

HISTOCHEMISTRY AND CELL BIOLOGY
Volume 133, Issue 5, Pages 557-565

Publisher

SPRINGER
DOI: 10.1007/s00418-010-0695-9

Keywords

Cannabinoid receptors; Fatty acid amide hydrolase; Menstrual cycle; Human; Uterus

Funding

  1. BUPA Foundation
  2. Reproductive Sciences Section, University of Leicester

Ask authors/readers for more resources

Plasma anandamide (AEA) levels fluctuate throughout the menstrual cycle and in early pregnancy in a pattern suggesting its involvement in implantation and early pregnancy maintenance through mechanisms that might involve its binding to cannabinoid receptors CB1 and CB2. Plasma AEA levels are maintained by the actions of the enzymes fatty acid amide hydrolase (FAAH) and N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD). All of these component parts of the 'endocannabinoid system' have been demonstrated in rodent but not in human uteri. This study aimed to demonstrate the presence of the endocannabinoid system in the human uterus and catalogue its modulation. Immunohistochemical techniques were employed to localise and determine the distribution of immunoreactive CB1, CB2, FAAH, and NAPE-PLD in well-characterised menstrual cycle biopsy samples. Immunoreactive CB1 and CB2 were widely distributed throughout the uterine tissue. In the myometrium and endometrium, smooth muscle cells were immunoreactive, although the vascular smooth muscle cells in both tissues were more so. In the endometrium, CB1 and CB2 immunoreactivity was primarily restricted to the glandular epithelium and expression was unrelated to the phase of the cycle. FAAH immunoreactivity in the endometrium was highest in the mid-proliferative gland and mid-secretory stroma, whilst NAPE-PLD immunoreactivity was down-regulated in the secretory epithelial gland compared to the proliferative epithelial gland and unaffected in the stroma. These data indicate that elements of the 'endocannabinoid system' coexist in many cell types within the uterus and may provide insight into the sites of action of endogenous and exogenous cannabinoids during endometrial transformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available