4.3 Article

Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex

Journal

HIPPOCAMPUS
Volume 22, Issue 6, Pages 1277-1299

Publisher

WILEY
DOI: 10.1002/hipo.20993

Keywords

memory; neuronal intrinsic properties; parahippocampal region; postnatal development; electrophysiology; neuron morphology

Categories

Funding

  1. Kavli Foundation
  2. EU
  3. Norwegian Research Council [145993, 181676]

Ask authors/readers for more resources

Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter depends on inputs and thus potentially on the morphology of principal neurons. In this comprehensive study, we systematically compared the morphological and physiological characteristics of principal neurons in all MEC layers of newborn rats before and after weaning. We recorded simultaneously from up to four post-hoc morphologically identified MEC principal neurons in vitro. Neurons in L(ayer) I-LIII have dendritic and axonal arbors mainly in superficial layers, and LVI neurons mainly in deep layers. The dendritic and axonal trees of part of LV neurons diverge throughout all layers. Physiological properties of principal neurons differ between layers. In LII, most neurons have a prominent sag potential, resonance and membrane oscillations. Neurons in LIII and LVI fire relatively regular, and lack sag potentials and membrane oscillations. LV neurons show the most prominent spike-frequency adaptation and highest input resistance. The data indicate that adult-like principal neuron types can be differentiated early on during postnatal development. The results of the accompanying paper, in which principal neurons in the lateral entorhinal cortex (LEC) were described (Canto and Witter,2011), revealed that significant differences between LEC and MEC exist mainly in LII neurons. We therefore systematically analyzed changes in LII biophysical properties along the mediolateral axis of MEC and LEC. There is a gradient in properties typical for MEC LII neurons. These properties are most pronounced in medially located neurons and become less apparent in more laterally positioned ones. This gradient continues into LEC, such that in LEC medially positioned neurons share some properties with adjacent MEC cells. (c) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available