4.3 Article

AMPA GluR-A Receptor Subunit Mediates Hippocampal Responsiveness in Mice Exposed to Stress

Journal

HIPPOCAMPUS
Volume 21, Issue 9, Pages 1028-1035

Publisher

WILEY-BLACKWELL
DOI: 10.1002/hipo.20817

Keywords

glutamate; NMDA receptors; activity regulated cytoskeletal-associated protein; CaMKII; glucocorticoids; synapsin I

Categories

Funding

  1. Vigoni Programm (Deutscher Akademischer Austauschdienst)
  2. Italian Ministry of Health
  3. Deutsche Forschungsgemeinschaft [GA427/8-1, SP602/2-1]

Ask authors/readers for more resources

Because stress represents a major precipitating event for psychiatric disorders, it is important to identify molecular mechanisms that may be altered in vulnerable individuals when exposed to stress. Here, we studied GluR-A(-/-) mice, animals with compromised AMPA receptor signaling, and characterized by a schizophrenic as well as depressive phenotype to investigate changes occurring in response to an acute stress. Wild-type and GluR-A(-/-) mice were exposed to a single immobilization stress and sacrificed immediately after the end of the stress for the analysis of activity regulated genes and of glutamatergic synapse responsiveness. The acute stress produced a marked increase in the hippocampal expression of Arc (activity-regulated cytoskeletal-associated protein) in GluR-A(-/-), but not in wild-type mice, which was associated with a similar increase of phospho-CaMKII, a partner in the action of Arc. When looking at the glutamatergic response to stress in wild-type animals, we found that stress increased GluR-A phosphorylation on serine831, an effect that was paralleled by a significant increase of the phosphorylation of the main NMDA receptor subunits, that is, NR-1 and NR-2B. Conversely, the stress-induced modulation of NMDA receptor subunits was not observed in GluR-A(-/-) mice. We suggest that enhanced stress responsiveness in GluR-A(-/-) mice may be due, at least in part, to their inability to activate NMDA-mediated glutamatergic neurotransmission, suggesting that the integrity of AMPA/NMDA receptor function may be important for successful coping under stressful conditions. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available