4.6 Article

Surface Enzyme Chemistries for Ultrasensitive Microarray Biosensing with SPR Imaging

Journal

LANGMUIR
Volume 31, Issue 35, Pages 9527-9536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la504797z

Keywords

-

Funding

  1. National Institutes of Health [GM059622]

Ask authors/readers for more resources

The sensitivity and selectivity of surface plasmon resonance imaging (SPRI) biosensing with nucleic acid microarrays can be greatly enhanced by exploiting various nucleic acid ligases, nucleases, and polymerases that manipulate the surface-bound DNA and RNA. We describe here various examples from each of these different classes of surface enzyme chemistries that have been incorporated into novel detection strategies that either drastically enhance the sensitivity of or create uniquely selective methods for the SPRI biosensing of proteins and nucleic acids. A dual-element generator detector microarray approach that couples a bioaffinity adsorption event on one microarray element to nanoparticle-enhanced SPRI measurements of nucleic acid hybridization adsorption on a different microarray element is used to quantitatively detect DNA, RNA, and proteins at femtomolar concentrations. Additionally, this dual-element format can be combined with the transcription and translation of RNA from surface-bound double-stranded DNA (dsDNA) templates for the on-chip multiplexed biosynthesis of aptamer and protein microarrays in a microfluidic format; these microarrays can be immediately used for real-time SPRI bioaffinity sensing measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available