4.3 Article

Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes

Journal

HERNIA
Volume 16, Issue 3, Pages 251-258

Publisher

SPRINGER
DOI: 10.1007/s10029-012-0913-6

Keywords

Mesh classification; Porosity; Biomechanical anisotropy

Categories

Funding

  1. InnoMet.NRW [005-1003-0067]

Ask authors/readers for more resources

It is an undisputable fact that meshes have become standard for repair of abdominal wall hernias. Whereas in the late eighties there were only a couple of different devices available, today we have to choose among some hundreds, with lots of minor and major variations in polymer and structure. As most of the minor variations may not lead to significant change in clinical outcome and may be regarded as less relevant, we should focus on major differences. Eventually, this is used to structure the world of mesh by forming groups of textile devices with distinct biological response. Many experimental and some clinical studies have underlined the outstanding importance of porosity, which fortunately, in contrast to other biomechanical quanlities, is widely unaffected by the anisotropy of meshes. In accordance with the major manufacturers of meshes, a classification of meshes was derived from a huge pool of textile data based briefly on the following: (1) large pores, (2) small pores, (3) additional features, (4) no pores, (5) 3D structure and (6) biological origin. At 1,000 explanted meshes the value of this classification was evaluated by group-specific assessment of inflammatory and connective tissue reaction. Application of this classification to common products has proved feasable, and each of the six different classes includes devices that in clinical trials failed to show relevant differences in patients' outcome when comparing products within the same group. Furthermore, histological analysis confirmed significant differences in tissue reactions between but not within the different classes. Classifying implants according to a similar response enables grouping patients into comparable cohorts despite implantation of different devices. Furthermore, it enables the examination of the impact of mesh classes for the various indications even from heterogenous data of registries. Finally and not the least, any grouping supports the surgeon to select the best device to meet the individual need and to tailor patients therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available