4.4 Article

Constant heat flux solution for mixed convection boundary layer viscoelastic fluid

Journal

HEAT AND MASS TRANSFER
Volume 49, Issue 2, Pages 163-171

Publisher

SPRINGER
DOI: 10.1007/s00231-012-1075-x

Keywords

-

Funding

  1. Universiti Teknologi Malaysia, UTM, MOHE [4F109, 02H80]

Ask authors/readers for more resources

The mixed convection boundary layer of a viscoelastic fluid past a circular cylinder with constant heat flux is discussed. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing non-similar partial differential equations are transformed into dimensionless forms and then solved numerically using the Keller-box method by augmenting an extra boundary condition at infinity. Numerical results obtained in the form of velocity distributions and temperature profiles are presented for a range of values of the dimensionless viscoelastic fluid parameter. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the momentum boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available