4.4 Article

Right ventricular substrate mapping using the Ensite Navx system: Accuracy of high-density voltage map obtained by automatic point acquisition during geometry reconstruction

Journal

HEART RHYTHM
Volume 6, Issue 11, Pages 1598-1605

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.hrthm.2009.07.040

Keywords

Electroanatomic mapping; Arrhythmogenic right ventricular dysplasia; Cardiac magnetic resonance imaging

Ask authors/readers for more resources

BACKGROUND Contact point-to-point electroanatomic mapping (Pt-Map) is a validated toot to evaluate right ventricular (RV) substrate. When using the EnSite NavX system (St. Jude Medical, St Paul, Minnesota), geometry reconstruction by dragging the mapping catheter (Geo-Map) allows for quicker acquisition of a large number of points and better definition of anatomy, but it is not validated for substrate mapping. OBJECTIVE This study evaluates the feasibility and accuracy of Geo-Map. METHODS Thirteen patients (mean age 38 +/- 12 years) with RV arrhythmias and an apparently normal heart underwent cardiac magnetic resonance imaging (MRI), Pt-Map, and Geo-Map. The 2 maps were compared in terms of mapping procedural time, radiation time, and total number of points acquired. We finally compared the number and characteristics of tow-potential areas on each patient's Pt-Map, Geo-Map, and cardiac MRI. RESULTS Geo-Map required significantly shorter mapping and radiation times in comparison to Pt-Map (12.4 +/- 4.6 vs. 31.9 +/- 10.1 and 5.8 +/- 2.1 vs. 12.1 +/- 3.9, P < .001). Furthermore, Geo-Map was based on a significantly higher density of points in comparison to Pt-Map (802 205 vs. 194 38, P < .001). Taking into consideration the total number of RV regions analyzed, the Pt-Map and Geo-Map disagreed in 2 of 65 (3%) regions (P = NS), which only Geo-Map identified as Low-potential areas and indeed corresponded to wall motion abnormalities on MRI. CONCLUSION Voltage maps obtained through RV geometry acquisition have accuracy comparable to that of conventional point-by-point mapping in detecting low-voltage areas, have a good correlation with MRI wall motion abnormalities, and allow a significant reduction in procedural time and x-ray exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available