4.7 Article

Non-contact acoustic capture of microparticles from small plasma volumes

Journal

LAB ON A CHIP
Volume 15, Issue 12, Pages 2588-2596

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5lc00290g

Keywords

-

Funding

  1. Knut and Alice Wallenberg Foundation
  2. Swedish Foundation for Strategic Research

Ask authors/readers for more resources

Microparticles (MP) are small (100-1000 nm) membrane vesicles shed by cells as a response to activation, stress or apoptosis. Platelet-derived MP (PMP) has been shown to reflect the pathophysiological processes of a range of cardiovascular diseases and there is a potential clinical value in using PMPs as biomarkers, as well as a need to better understand the biology of these vesicles. The current method for isolating MP depends on differential centrifugation steps, which require relatively large sample volumes and have been shown to compromise the integrity and composition of the MP population. We present a novel method for rapid, non-contact capture of PMP in minute sample volumes based on a microscale acoustic standing wave technology. Capture of PMPs from plasma is shown by scanning electron microscopy and flow cytometry. Furthermore, the system is characterized with regards to plasma sample concentration and flow rate. Finally, the technique is compared to a standard differential centrifugation protocol using samples from both healthy controls and ST-elevation myocardial infarction (STEMI) patient samples. The acoustic system is shown to offer a quick and automated setup for extracting microparticles from small sample volumes with higher recovery than a standard differential centrifugation protocol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available