4.6 Article

Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis

Journal

HARMFUL ALGAE
Volume 31, Issue -, Pages 41-53

Publisher

ELSEVIER
DOI: 10.1016/j.hal.2013.08.005

Keywords

Aging; Programmed cell death; Caspase

Funding

  1. NOAA Oceans and Human Health Pre-Doctoral Fellowship awarded
  2. NOAA Marine Biotoxins Program

Ask authors/readers for more resources

The observation of caspase-like activity during cell death has provided a new framework for understanding the evolutionary and ecological contexts of programmed cell death in phytoplankton. However, additional roles for this caspase-like activity, the enzymes responsible, and the targets of this enzyme activity in phytoplankton remain largely undefined. In the present study, the role of caspase-like activity in aging and ROS-mediated cell death were investigated and death programs both dependent on and independent of caspase-like activity were observed in the toxic dinoflagellate, Karenia brevis. The dual use of in situ caspase 3/7 and TUNEL staining identified previously undescribed death-associated morphotypes in K. brevis. In silica motif analysis identified several enzymes with predicted caspase-like activity in the K. brevis transcriptome, although bona fide caspases are absent. Lastly, computational prediction of downstream caspase substrates, using sequence context and predicted secondary structure, identified proteins involved in a wide range of biological processes including regulation of protein turnover, cell cycle progression, lipid metabolism, coenzyme metabolism, apoptotic and autophagic death. To confirm the computational predictions, a short peptide was designed around the predicated caspase cleavage site in a predicted novel K. brevis caspase 3/7-like target, Sadenosylmethionine synthetase (KbAdoMetS). Cleavage of the peptide substrate with recombinant caspase 3 enzyme was determined by MALDI-TOF MS, confirming that KbAdoMetS is indeed a bona fide caspase substrate. These data identify the involvement of caspase-like activity in both aging and cell death in K. brevis and identify novel executioner enzymes and downstream targets that may be important for bloom termination. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available