Nanoparticle profiling: a comprehensive assessment of physical, chemical, and toxicological characteristics at Thessaloniki airport

Tsakonas, G. ¹, Stamatiou, R.², Margaritis, D.³, Juárez Facio A.T. ⁴, Introna, M. ⁴, Steimer S.S. ⁴, Petromelidou, S.^{5,6}, Lambropoulou, D.5,6, Elihn K.4, Lazou, A.2 and Samaras, Z.1

> ¹Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece. ²Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece.

³Centre for Research and Technology Hellas (CERTH)/Hellenic Institute of Transport (HIT), 6th km, Charilaou - Thermi Road, GR 57001, Thermi, Thessaloniki, Greece. ⁴Department of Environmental Science, Stockholm University, 10691, Stockholm, Sweden)

⁵Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece ⁶Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001

THESSALONIKI

Nanoparticle Emissions

From The Transport Sector

Introduction

Objective: Evaluate nanoparticles in proximity to the runway at Thessaloniki Airport during two periods (cold and warm).

Significance: Understanding nanoparticle characteristics and their potential health impacts on airport personnel, travelers and people that live/work in the агеа.

Methodology

- Sampling point: 200m from runway
- 2 Measurement Seasons: Cold-Warm (4 weeks each)

4 Air Liquide Interface cell exposures each season (2 hours each)

Full Nanoparticle Characterization

Physical: Particle Size Distribution, nanoparticle mass Chemical: Polycyclic aromatic hydrocarbons (PAHs)

Toxicological: Cell viability assessment

For particle size distribution

DGI For nanoparticle mass collection

Evaluation

Toxicological

Cyclone to Isolate particles with D<2.5 µm

Impactor to isolate particles with D<450 nm

Naonoparticle mass concentration 0.06 80.03 Particle 20.0 0.01 0.00 Warm Cold

(D<130nm)

Chemical Analysis

polycyclic aromatic

hydrocarbons

Wind conditions 400 £ 300 18:00 Time (h) **Cold Wind Speed** Warm Wind speed **Cold Wind Direction** Warm Win Direction

Inserts' Preparation: Cells cultured to 80% confluency. Recultivated in 6-well plate inserts (Falcon) at 2x10⁵ cells/well.

Incubation: Incubated for 24 hours at 37°C with 5% CO₂ in DMEM-High glucose with 10% FBS, 5% PS (100 U/ml, 100 µg/ml), and 1 mM Sodium pyruvate (complete medium).

Results - Key Findings

- 1. The physical and chemical characteristics demonstrate season variations
- 2. During the Cold period VOCs with higher molecular weight were observed
- 3. Airport nanoparticles reduce cell viability and can lead to cell death, implying possible harmful effects on human health

HEPA filters to remove the effect of particles

Air Liquide Interface system (ALI) For real-time cell exposure

The nPETS project that led to this work has received funding from the European Union's Horizon

2020 research and innovation programme under grant agreement No 954377