Methane dehydroaromatization using Molybdenum-supported coal waste material catalyst

<u>Anil Chandra Kothari^{1, 2}, Akashdeep Karmakar¹, Dr. Rajaram Bal*</u>

¹Light stock processing Division, CSIR-Indian Institute Of Petroleum, Dehradun, Uttarakhand, India ²Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

E-mail: ackothari95@gmail.com, raja@iip.res.in.

➢Methane is widely distributed gas around the globe. Also, the volumetric energy density of gas very low so it is being converted into shippable liquids as benzene.

Introduction

>The direct conversion of methane into aromatics is simple and cost-effective.

➢Methane dehydroaraomatization is endothermic reaction. The strong C-H bond makes, its direct conversion very challenging.

A combination of active metal and Si-Al based material makes the conversion better to some extent. Coal waste material containing 68–75 wt% silicon and aluminum are good source of Si-Al which are required for catalyst synthesis. $6CH_4(g) - 6CH_4(g)$

Research Objective

Methane and its conversion at a glance

Applications of Benzene

Fig Details.

(1) IR of Mo Precursor (2) XRD of Mo Precursor (3) TGA of CWM (4) XRD of CWM (5) SEM image of MoP (6) BET of 6MoO₃/CWM
(7) SEM image of CWM (8) SEM image of 6MoO₃/CWM (9) Raman of Mo Precursor (10) TEM image of 6MoO₃/CWM catalyst
(11) TEM image of spent 6MoO₃/CWM catalyst (12) TPR of 5MoO₃/CWM and 6MoO₃/CWM catalyst

Results and Conclusion

Mo/CWM catalyst prepared using the wetness impregnation method gives the 8% conversion and 85% benzene selectivity at 1700 ml g⁻¹h⁻¹ gas hurly space velocity (GHSV) & 700°C temperature with 0.3 gm catalyst loading.
 The MDA reaction gives by-products, including carbon monoxide, ethane, ethylene, propylene, and hydrogen.

Indo-French Seminar on Catalysis for Sustainability 10-13 December 2023

 Jones, H. A.; Nedwell, D. B., Methane emission and methane oxidation in land-fill cover soil. FEMS Microbiology Ecology 1993, 11 (3-4), 185-195.
 Kosinov, N. and Hensen, E.J., 2020. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization. *Advanced Materials*, 32(44), p.2002565.

3. Ahmaruzzaman, M., 2010. A review on the utilization of fly ash. *Progress in energy and combustion science*, *36*(3), pp.327-363.

Acknowledgement

A.C.K. thanks DST-INSPIRE, New Delhi, India for fellowship support. The Director, CSIR-IIP, is acknowledged for his encouragement and help. ACK and RRB are thankful to the Analytical Science Division, CSIR-Indian Institute of Petroleum, for providing analytical support.