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INTRODUCTION » Plus, our model uses Haar Cascades to detect faces. A pre-trained CONFUSION M ATRIX

cascade of classifiers that can detect faces. This addresses most low light

Convolutional Neural Networks (CNNs) are a type of deep learning | 1ssues.

, S , , - » Adam optimizer gave the highest overall accuracy.
algorithm that 1s primarily used for image processing and recognition

» It does drastically better for faces showing disgust and fearful - almost

tasks. CNNs consist of multiple layers, each of which performs a Low Level Features Mid Level Features High Level Features 30%
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PROPOSED ARCHITECTURE .
OBJECTIVE

» Our goal 1s to develop a neural network to recognize facial
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expressions and classify them into one of seven emotions - happy, VY aY, \'./\ o~
sad, disgusted, surprised, angry, fearful and neutral. H}v.{,. ’\\‘,‘H_\%’.‘\e’:}"y’.\‘\'f ’ PF) COMPARISON WITH OTHER
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StYlC of a news feed. \E{l neutral

» By identifying these emotions, we will then generate content in the E

\/mur
Nl

. . . , angry » Similar systems that made use of emotion analysis did so on static
There are 6 universal emotions in all of the world’s cultures. W , M : , M
S Sy S images and not on real-time video streams.
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ey g St "A‘"’A"/{:\ disgusted » Some such models made use of using basic machine learning
= techniques such as Support Vector machine and Linear Discriminant

0 L L2 13 L4 L5 L6 L7 L8 L9 Analysis, in combination with regular neural networks.

input ~ Conv Max PoolingConv Max PoolingConv ~ Max PoolingFC ~ FC ~ output » A disadvantage of these systems is that they take a long time to train
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and their predictions are not instantaneous as required by a real-time

Happiness Sadness system.

» These systems take a long time to train because of the complexity of
the data and the network 1itself.

PREPROCESSING THE DATA » Owing to the low computational requirements and faster training and

prediction time, our model can be further developed for mobile use.

» The 1nitial dataset was split into two sections - a string of 2304 numbers
indicating pixel values for the image and a number from 1-7 indicating the

emotion. CONCLUSION
» We converted the string of numbers into a 48x48 matrix to feed into the
neural network.

Surprise

» Thus we conclude that a real-time system in which emotions can be
detected 1s feasible and generating content based on these emotions is a

CHALLENGE S emotion pixels viable proposal.

» Furthermore, the established average accuracy of 60% 1s competent
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Simple CNN 128 RMSProp 10 24.728

ADRESSING THE CHALLENGES

» We have used a deep neural network - a Convolutional Neural
Network which 1s capable of overcoming this problem by spatial
locality - detecting edges and extracting certain features.

Model #1 96 RMSProp 100 57.397
Model #2 64 SGD 10 55.900

Model #3 128 Adam 20 60.587




