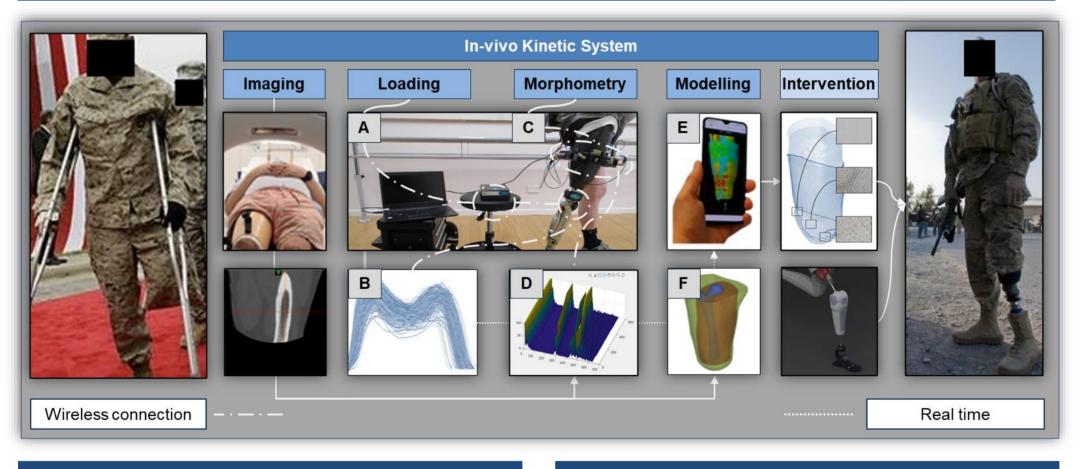


Improving battlefield-feasible diagnostic capabilities: next-generation diagnostic devices for individuals suffering from limb loss

Laurent Frossard ¹, Christian Langton ¹, Stefanie Feih ², David Lloyd ^{1,2}

¹ Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Griffith University / Menzies Health Institute Queensland; ² Advanced Design Prototyping Technologies Institute (ADaPT)


Griffith University, Gold Coast, Australia

I.frossard@griffith.edu.au

Implications for Defence

The In-vivo Kinetic System 2.0 will be a **critical element of multifaceted VA's retention strategies:** battlefield-feasible diagnostic capabilities, decision support tools for prescription of conventional and bionics components, treatment strategies restoring pre-injury function, opportunities to return to duty post-injury, reducing healthcare costs and socio-economic burden associated with limb loss

Background

Medical Care providers are unable to establish true causal relationships between factors determining residuum health and the prescription of personalized interventions

Methods

The wearable and non-invasive In-vivo Kinetic System 2.0 was developed using the Biodesign Innovation process

Aims

Present In-vivo Kinetic System 2.0 (Figure 1); integrating loading measurements (A, B), morphometric using ultrasonography (C, D) and computational models (E, F)

Results

This device could establish the cause-effect relationship between prosthetic care interventions and residuum neuromusculoskeletal dysfunctions

References

- Frossard et al. Frontiers
 Rehabil. Sci. 2022,18;3:950481
- Frossard et al. J Sci Med Sport.
 2023, 26 Suppl 1:S22-S29

Acknowledgements

- 2019 US DoD RESTORE (W81XWH2110215)
- 2021 Bionics Queensland Challenge Major Prize Mobility
- 2021 ANMS-ISPO Research Grant