

Synthesis and Characterization of L-threonine Polyurethane (LTHU) Nanoparticles for Drug Delivery System

Soojeong Choi, Seoeun Oh, Ildoo Chung*

Department of Polymer Science and Engineering, Pusan National University, Busan, Korea

Conclusion

 \triangleright

- Synthetic processes were confirmed by H-NMR, C-NMR, and FT-IR spectroscopies, and molecular \succ weights and polydispersity of PLA-PEG-PLA and LTHU were investigated by GPC analysis.
- The thermal property and crystal structure of PLA-PEG-PLA were analyzed by DSC and XRD respectively. \triangleright
- The morphology and size of nanoparticles were characterized by DLS, FE-SEM, TEM, and fluorescence \succ microscope, and it was confirmed that spherical particles smaller than 200 nm were fabricated.
- A maximum of 4.01 wt% of carboplatin was loaded into the nanoparticles, and the maximum value of \succ encapsulation efficiency was also found to be 87.2%.
- In vitro cumulative drug release study demonstrated that CLNP maintained sustained release behavior \succ for 14 days and also it was confirmed that LTHU nanoparticles were maintained stably through the physical stability assay.
 - These results suggested the possibility of application of LTHU nanoparticles loading carboplatin as sustained drug carriers.

Temperature(°C)

In vitro cumulative release & stability of NPs in PBS

